# NTS Voynich Empirical Suite (Local) This folder contains production-ready scripts to replicate and extend the empirical validation of the Voynich/NTS model. They accept the EVA corpus at: `/mnt/data/voinich EVA.txt`. ## Scripts - `nts_prs_segment.py` — PRS segmentation of tokens. - `nts_productivity.py` — Morphological productivity P and P_s per root. - `nts_zipf_entropy.py` — Zipf exponent and Shannon entropy (+ optional plot). - `nts_cooc.py` — Co-occurrence and n-gram extraction. - `nts_random_check.py` — Falsifiability via controlled randomization. - `nts_sts_full.py` — STS index and transition matrix on the full corpus. - `nts_utils.py` — Common helpers (loading, checksums, segmentation, stats). ## Example run ``` mkdir -p /mnt/data/nts_outputs python /mnt/data/nts_suite/nts_prs_segment.py --eva "/mnt/data/voinich EVA.txt" --out "/mnt/data/nts_outputs/prs_segments.csv" --report "/mnt/data/nts_outputs/prs_report.csv" python /mnt/data/nts_suite/nts_productivity.py --prs "/mnt/data/nts_outputs/prs_segments.csv" --out "/mnt/data/nts_outputs/productivity.csv" python /mnt/data/nts_suite/nts_zipf_entropy.py --eva "/mnt/data/voinich EVA.txt" --out "/mnt/data/nts_outputs/zipf_entropy.json" --plot "/mnt/data/nts_outputs/zipf_plot.png" python /mnt/data/nts_suite/nts_cooc.py --eva "/mnt/data/voinich EVA.txt" --n 2 --top 1000 --out "/mnt/data/nts_outputs/cooc_bigram.csv" python /mnt/data/nts_suite/nts_random_check.py --eva "/mnt/data/voinich EVA.txt" --out "/mnt/data/nts_outputs/random_check.json" --seed 42 python /mnt/data/nts_suite/nts_sts_full.py --prs "/mnt/data/nts_outputs/prs_segments.csv" --out "/mnt/data/nts_outputs/sts_summary.json" ``` ## Notes - Prefix/suffix sets are initialized from your manuscript and can be expanded in `nts_utils.py`. - State mapping (S1..S5) follows your documented logic and can be refined as needed. - All outputs are CSV/JSON/PNG for maximum portability. # Core scripts (extended) These three are the primary, extended scripts referenced in *Capitolo 12*: - `nts_empirical_check.py` – extended single/multi-window empirical check (H, MI, P_s, STS), CSV + JSON. ```bash python /mnt/data/nts_suite/nts_empirical_check.py \ --eva "/mnt/data/voinich EVA.txt" \ --window 500 --windows 10 --shift 500 \ --out_json "/mnt/data/nts_outputs/empirical_check.json" \ --out_csv "/mnt/data/nts_outputs/empirical_check.csv" \ --top 20 ``` - `nts_eva_pie.py` – extended EVA–PIE similarity (configurable threshold, optional PIE JSON), CSV + JSON. ```bash python /mnt/data/nts_suite/nts_eva_pie.py \ --eva "/mnt/data/voinich EVA.txt" \ --min_sim 0.5 --top 200 \ --out_csv "/mnt/data/nts_outputs/eva_pie_similarity.csv" \ --out_json "/mnt/data/nts_outputs/eva_pie_summary.json" ``` - `nts_stability_s1s5.py` – extended stability metrics across windows (S1..S5), CSV + JSON. ```bash python /mnt/data/nts_suite/nts_stability_s1s5.py \ --eva "/mnt/data/voinich EVA.txt" \ --window 50 --windows 8 --shift 50 \ --out_csv "/mnt/data/nts_outputs/stability_windows.csv" \ --out_json "/mnt/data/nts_outputs/stability_summary.json" ``` These integrate cleanly with the rest of the suite already present in `/mnt/data/nts_suite`.